智能车制作

 找回密码
 注册

扫一扫,访问微社区

查看: 2109|回复: 0
打印 上一主题 下一主题

[分享] PID控制(一)

[复制链接]

4

主题

15

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
331
QQ
威望
217
贡献
84
兑换币
73
注册时间
2018-1-14
在线时间
15 小时
跳转到指定楼层
1#
发表于 2018-5-22 16:43:33 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
PID算法
    在过程控制中,PID控制器,一直是应用最为广泛的一种自动控制器;PID控制也一直是众多控制方法中应用最为普遍的控制算法,PID算法的计算过程与输出值(OUT)有着直接函数关系,因此想进一步了解PID控制器,必须首先熟悉PID算法,这也是笔者为什么在下面的内容里大费周章讨论这个问题的原因所在。
    PID控制器调节输出,是为了保证偏差值(e值)为零,使系统达到一个预期稳定状态。这里的偏差(e)是给定值(SP)和过程变量值(PV)的差。PID控制原理基于下面的算式:
    输出M(t)是比例项(P)、积分项(I)、微分项(D)的函数。
    M(t)=KC*e+ KC* +Minitial+ KC*TD* (1-1)
    为了让计算机能处理这个PID算法,我们必须把这个连续算式离散化成为周期采样偏差算式,才能计算调节输出值(以下简称OUT值)。将积分与微分项分别改写成差分方程,可得:
(1-2)=e(1)+e(2)+…………+e(k);
(1-3)=[e(k)-e(k-1)]/T。
T是离散采样周期
    将上(1-2)和(1-3)式代入输出项函数(1-1)式,可得数字偏差算式(1-4)为:
    Mn=KC*en+KC* +Minitial+ KC* *(en-en-1) (1-4)
    输出=比例项 +积分项 +微分项
    (1-1)与(1-4)式中:
    M(t) :回路输出(时间函数)
    Mn :第n次采样时刻,PID回路输出的计算值(OUT值)
    T :采样周期(或控制周期)
    Minitial :PID回路输出初始值
    Kc :PID回路增益
    TI :积分项的比例常数
    TD :微分项的比例常数
    en :在第n次采样时刻的偏差值(en=SPn-PVn)
    en-1:在第n-1次采样时刻的偏差值(也称偏差前项)
    从这个数字偏差算式可以看出;
   
    比例项是:当前误差采样的函数。
    积分项是:从第一个采样周期到当前采样周期所有误差项的函数。
    微分项是:当前误差采样和前一次误差采样的函数。
    在这里需要说明的是:我们在积分项中可以不保存所有误差项,因为保存所有误差项会占用较大的计算机存储单元,所以我们通常从第一次误差采样开始,我们利用每一次偏差采样都会计算出的输出值的特点,在以后的输出值计算时只需保存偏差前项和积分项前值。利用计算机的处理的周期重复性,我们就可以根据我们刚才推导的数字偏差算式计算出下一次积分项值。因此我们可以简化上述的数字偏差算式(1-4)为:
    Mn=KC*en+KC* en +MX+ KC* *(en-en-1) (1-5)
    CPU(计算机中央芯片)实际计算中使用的是(1-5)简化算式的改进比例项、积分项、微分项和的形式计算PID输出的。
    改进型算式是:
    Mn = MPn +MIn + MDn (1-6)
    输出=比例项+积分项+微分项
    (1-5)和(1-6)式中:
    Mn :第n次采样时刻,PID回路输出的计算值(OUT值)
    MPn :第n次采样时刻的比例项
    MIn :第n次采样时刻的积分项
    MDn :第n次采样时刻的微分项
    T :采样周期(或控制周期)
    MX :PID回路积分前项
    Kc :PID回路增益
    TI :积分项的比例常数
    TD :微分项的比例常数
    en :在第n次采样时刻的偏差值(en=SPn-PVn)
    en-1 :在第n-1次采样时刻的偏差值(en-1=SPn-1-PVn-1) (也称偏差前项)
    下面我们就根据(1-5)与(1-6)的对应关系单独分析一下各子项中各值的关系
    3.1比例项(MPn):
    比例项MP是增益(Kc)和偏差(e)的乘积。因为偏差(e)是给定值(SP)与过程变量值(PV)之差(en=SPn-PVn)。根据(1-5)与(1-6)式中对应关系可得CPU执行的求比例项算式为:
    MPn=Kc* (SPn-PVn) (2-1)
    式中 :
    MPn :第n次采样时刻比例项的值
    Kc :PID回路增益


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关于我们|联系我们|小黑屋|智能车制作 ( 黑ICP备2022002344号

GMT+8, 2024-12-25 14:16 , Processed in 0.052469 second(s), 26 queries , Gzip On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表